INDEX

A

Abex Corporation, 375
Active Cavity Irradiance Monitor II, ACRIM II, 103
Advanced Communications Technology Satellite, ACTS, 17, 18, 47, 96, 254
Advanced Digital Engine Control System, ADECS, 213
Advanced Digital Synthetic Aperture Radar (SAR) Processor, ADSP, 257
Advanced Fighter Technology Integration, AFTI, 198
Advanced short takeoff and vertical landing, ASTOVL, 181, 210
Advanced technology blades, SV-15/ATB program, 210
Advanced Transport Operating System, ATOPS, 229
Advanced Very High Resolution Radiometer, AVHRR, 35
Aerojet General Corp., 563, 566, 569
Aeronautics, Balloons, and Sounding Rockets, AB&SR, 312
Aero-Space Technology, AST, 467
Aetna Life and Casualty, Inc., 52, 53
Agency for International Development, 16
Agriculture, U.S. Department of, 13, 16–17, 392; and AgRISTARS, 16–17, 81
Aiken, William S., Jr., 186, 187
Air Products & Chemicals, Inc., 551, 554, 557, 560, 563, 566, 570
Airborne Windshear Detection and Avoidance Program, 234
Aircraft Energy Efficiency program, ACEE, 181, 189, 190–197, 198
Alabama, University of, 360, 572, 575, 579, 582, 590, 592, 595, 598
Alaska, 51, 55, 57; and Fairbanks, 306, 307, 342; and University of, 594, 596, 600
Allen, H. Julian, 390
Allen, Lew, Jr., 394
Aller, Robert O., 301
AlliedSignal Aerospace Co., 568
Allison Corp., 210
American Institute of Aeronautics and Astronautics, 572, 575, 578, 581, 584, 587, 590, 593, 596, 599
American Satellite Company, ASC, 50, 74, 128
American Society of Mechanical Engineers, 237
American Telephone and Telegraph, AT&T, 50, 51, 560
Ames, Joseph S., 391
Anelex Corp., 564
Anik, 17, 51, 54, 64–65, 66, 67, 72, 159–161; and Telesat Canada Corporation, 17, 51, 64, 159–161
Announcement of Opportunity, 15, 25
Antigua, 306
Apollo program, 211, 397, 402; and Apollo-Soyuz Test Project, 28
Applications Explorer Mission, AEM, 14, 16
Applications Technology Satellites, ATS, 12, 13, 17
Arabsat, 17, 65, 66, 67, 73, 162
Argee Corp., 567
ARGOS, 48
Ariane, 54, 67
Arizona, University of, 571, 574, 577, 580, 584, 586, 589, 592, 595, 598
Arizona State University, 582, 591
Army, U.S., 14, 205, 208, 392, 396, 401
Arnold, Ray, 19
Ascension Island, 305, 307, 342
Asia, 57
Asia Satellite, AsiaSat, 55
Assembly Concept for Construction of Erectable Space Structures, ACCESS, 184, 243, 248, 253
Association of University Research and Astronomy, 578, 581, 583, 586, 589, 592, 595, 598
Atlantic Missile Range, 396
Atlantic Ocean, 39, 57, 63
Atlantis, 138, 163, 166
Atlas, 35, 37; and Atlas-Centaur, 58, 148–156
Atomic Energy Commission, 180

601
Auburn University, 369
Aussat, 17, 66–67, 74, 162–163; and Aussat Proprietary, Ltd., 66, 67
Australia, 57, 66, 74, 312; and Alice Springs, 312; and Canberra, 300, 306, 307, 308, 311, 320, 343; and Orroral Valley, 306, 347; and Parkes, 311, 312; and Tidbinbilla, 311, 312, 343; and Yarragardee, 305, 306, 349
Auter, Harry, 402
B
Bahamas, Grand, 306
Balch, Jackson M., 401
Ball Corp., 551, 553, 554, 557, 560, 563, 566, 569
Ballhaus, William F., Jr., 187, 390
Bamsi, Inc., 561, 563, 566, 569
Battelle Columbus Laboratories, 369, 577
Battelle Memorial Institute, 571, 574, 581, 583, 587, 590, 593, 596, 600
Beattie, Donald A., 186
Beechel National, Inc., 557
Beeler, D.E., 391
Beggs, James M., 355, 358, 388
Bell, 209
Bendix Corporation, Allied, 540, 550, 553, 556, 559, 562, 565
Benson, Robert, 20
Bikle, Paul F., 391
Boeing Aerospace Corporation, Services
Botswana, Africa, 305, 344; and Botswana National Museum, 344
Bowles, Roland, 235
Boyd, John, 391
Brazil, 17
British Aerospace, 210
Bryant, Frederick B., 301
Bulgaria, 49
Buckhorn, California, 305, 307
Bush, George, 228
C
California, University of, at Berkeley, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598; and at Los Angeles, 572, 575, 578, 580, 584, 587, 590, 593, 596, 599; and at San Diego, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
California Institute of Technology, 394, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
California State University at Chico, 573
Calio, Anthony J., 18, 47
Cape Canaveral, 306, 320, 395
Caribbean, 14, 57
Carruthers, John, 18
Carter, Jimmy, 16
Case Western Reserve University, 369, 372, 575, 578, 581, 584, 587, 590, 593, 596, 598
Centaur, 400; and Atlas-Centaur, 58, 148–156
Centers for the Commercial Development of Space, 360
Central America, 39
Centre Nationale d’Études Spatiales, CNES, 34
Charles Stark Draper Laboratory, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
Charlesworth, Charles E., 395
Cheney, Richard, 228
Chicago, University of, 571, 574, 577, 580, 583, 586, 589, 592, 595, 599
Chile, University of, 571, 574, 577, 580, 583, 586, 590, 593, 596, 599
Civil Service Reform Act of 1978, 464
Clark, John F., 393
Clarks, Henry J., 355, 356
Clarkson University, 369
Clean Air Act, Amendments, 15
Clear Lake, Texas, 394
Cleveland Electric Illuminating, 555
Cleveland Hopkins International Airport, 399
Cleveland State University, 600
Cohen, Aaron, 395
Colladay, Raymond S., 186, 187, 224, 225
Collier, Robert J., Trophy, 4, 182, 191, 398, 400; and National Aeronautic Association, 4
Colorado, University of, 369, 372, 572, 575, 577, 580, 584, 586, 589, 592, 595, 598
Columbia, 22, 138, 140, 160, 290
Columbia University, 572, 575, 578, 581, 585, 587, 590, 593, 596, 599
Commerce Business Daily, 504
Commerce, U.S. Department of, 13, 32
Commercial Use of Space, 1984 National Policy, 355
Commonwealth Scientific and Industrial Research Organization, Australia, 311
Communications Satellite Corporation, Comsat, 47, 52, 53, 58
Communications Technology Satellites, CTS, 12
Compton, Dale L., 390
Computer Sciences Corporation, 540, 550, 553, 556, 559, 562, 565, 568
INDEX

Comstar, 17, 50, 72, 128; and Comsat General Corporation, 50
Congress, 11, 12, 15, 16, 31, 32, 46, 47, 175, 176, 188, 189, 226, 228, 357, 358, 361, 396, 497, 498
Construction of Facilities, CoF, 498, 516
Continental Construction Corp., 569
Continental Telecom, Inc., Contel, 50, 314, 562, 565, 568
Continental Telephone, 314
Control Data Corporation, 551, 554, 557, 560, 564, 566
Cooper, Robert, 393
Cornell University, 572, 575, 578, 581, 584, 587, 590, 593, 596, 599
Cortright, Edgar M., 397
COSMOS, 48
COSPAS, 17, 37, 48, 49
Costa, S. Richard, 302
Cray Research Inc., 560, 569
Cryogenic Limb Array Etalon Spectrometer, CLAES, 102
Culbertson, Philip E., 357
Data Capture Facility, 321
Data Collection System, 34
Debus, Kurt H., 396
Deere, John, & Co., 370
Defense Systems, Inc., 370
Defense, U.S. Department of, DOD, 61, 70, 73, 176, 189, 192, 204, 205, 207, 208, 210, 213, 221, 224, 225, 226, 227, 228, 247, 299, 305, 348; and Defense Advanced Research Projects Agency, DARPA, 189, 205, 207, 208, 213, 217, 222, 223, 244, 227; and Defense Space Communications System, DSCS, 63
De France, Smith J., 390
Delmarva Peninsula, 402
Delta, 40, 51, 52, 67, 68
Denmark, 17, 247
Denver, Colorado, 235
Deutsch, George C., 187
Digital Autonomous Terminal Access Communication, DATAC, 231
Digital Electronic Engine Control, DEEC, 212
Digital Equipment Corporation, 552, 554, 557, 560, 564, 566
Digital fly-by-wire, DFBW, 210, 211, 212, 216
Discovery, 106, 128, 129, 130, 141, 157, 158, 161, 162, 165
District of Columbia, Washington, D.C., 501
Donlan, Charles J., 397
DuPont, 370
Dynamic Augmentation Experiment, DAE, 246
E
Earth, 5, 12, 16, 22, 26, 29, 30–38, 41, 42, 45, 48, 50, 55, 59, 60, 61, 62, 67, 68, 69, 178, 182, 183, 184, 222, 240, 247, 248, 249, 250, 251, 299, 300, 304, 309, 313, 315, 344, 394, 401, 403
Earth Data Corporation, 375
Earth Observation Satellite Company, EOSAT, 16, 42
Earth Observing System, EOS, 256
Earth Radiation Budget Experiment, ERBE, 15, 30, 31, 37
Earth Radiation Budget Satellite, ERBS, 14, 15, 28, 30, 31, 37, 73, 101
Earth Resources Technology Satellite, ERTS, 3, 13
Eastern Test Range, Cape Canaveral, 396
Eaton, Peter T., 356
ECRO, 345
Ecuador, Quito, 305, 306
Edelson, Burton, 19
EG&G Florida, Incorporated, 540, 553, 556, 559, 562, 565, 568
Ellington Air Force Base, 394
Elms, James C., 395
Emergency Locator Transmitter, ELT, 47–49
Emergency Position Indicating Radio Beacon, EPIRB, 47–49
Endeavour, 241
Energy, U.S. Department of, 180, 250, 400
Engineering and Economic Research, 570
England, 69; and Winkfield, 305
Enterprise, 211, 241, 392
Environmental Research Institute of Michigan, 369, 573, 576, 578
Estess, Roy S., 402
Europe, 47, 57
European Space Agency, ESA, 312, 501, 574, 577, 580, 583, 586
Evans, L.J., Jr., 357
Experimental Assembly of Structures in Extravehicular Activity, EASE, 184, 243, 248
Extravehicular activity, EVA, 249, 258
Extremely high frequency, EHF, 61

Fairchild Industries, Inc., 50, 314, 371, 555, 557, 560, 563, 566, 569
Feature Identification and Landmark Experiment, FILE, 26–27
Federal Acquisition Regulation, FAR, 502, 504, 506
Federal Aviation Administration, FAA, 176, 189, 192, 210, 229, 234, 235, 238
Federal Communications Commission, 18, 50
Federal Financing Bank, U.S. Department of Treasury, 314, 331, 332
Federal Technology Transfer Act of 1986, 359
Federal Wage System, 467
Ferrick, Eugene, 302
Finland, 17, 49
Fisk, Lennard A., 19
Fleet Satellite Communications, Fltsatcom, 17, 60, 72, 154–156
Fletcher, James C., 388
Force, Charles T., 301, 302
Fort Irwin, California, 306
Fosque, Hugh S., 301
France, 17, 34, 37, 48, 57, 247; and Modane, 195
Franklin Institute, 576
Frosch, Robert A., 356, 357, 360, 388

Gabris, Edward A., 188
Galapagos Islands, 14
Galaxy, 51, 52, 55, 67, 73, 131
Garrett Corporation, 552, 555
Gemini, Project, 396
General Dynamics Corp., 197, 198, 210, 212, 540, 550, 553, 556, 559, 562, 566, 569
General Motors, 194, 551
General Schedule, GS, 464, 465
General Sciences Corporation, 375
General Services Administration, GSA, 505, 506
Geological Survey, U.S., 13, 46
George Washington University, 572, 578, 585, 588, 591, 594, 597, 600
Georgia Institute of Technology, 573, 576, 591, 594, 597, 600
Geosat, 16
Geostar Corporation, 374
Geostationary Operational Environmental Satellite, GOES, 12, 14, 28, 32, 38, 39, 40, 41, 72, 116–121
Germany, 25, 57, 219, 247
Get Away Special, GAS, 25–26
Gillam, Isaac T., Ike, IV, 355, 391
Gilruth, Robert R., 395
Giotto, 312
Glennan, T. Keith, 388
Global Associates, 552
Global positioning system, GPS, 229
Global Weather Experiment, 15
Goddard, Robert H., 393
Goett, Harry J., 393
Goetz, Robert, 395
Goldstone, California, 306, 307, 308, 309, 311, 313, 344
Goodyear Aerospace Corporation, 257
Graham, William R., 178, 226, 388
Graves, Randolph A., 187
Greenbelt, Maryland, 51, 300, 304, 392
Greenwood, Lawrence, 19
Griffin, Gerald, 395, 396
Grumman Aircraft Corporation, 199, 210, 217, 373, 558, 566, 567, 568, 570
GTE, 373
GTI Corporation, 370
Guastaferrro, Angelo, 390, 391
Gulfstream Aerospace Corporation, 194, 196, 197

Halley’s Comet, 312
Halogen Occultation Experiment, HALOE, 33, 86, 102
Halpern, Richard, 20
Hamilton Standard, 192, 195
Hampton, Virginia, 397, 579, 581, 584, 587, 590, 593, 596, 599
Harrier, aircraft, 205
INDEX

Harris Corporation, 314, 563, 567
Harris, Leonard A., 187
Hart, Terry, 247
Harvard University, 571, 574, 577, 580, 584, 587, 589, 594, 596, 599
Hawaii, 39, 50, 51, 55, 57, 306, 571
Hawaii, University of, 574, 578, 580, 583, 587, 589, 592, 596, 599
Heath, Donald P., 393, 397
Heflex Bioengineering Test, 23
Hercules Corporation, 375
High Angle of Attack Research Vehicle, HARV, 220
High Resolution Doppler Imager, HRDI, 102
Highly Integrated Digital Electronic Control, HIDEC, 213
Highly Maneuverable Aircraft Technology, HIMAT, 214, 215, 216, 217, 286
Hinners, Noel W., 393
Hlass, Jerry I., 401
Holcomb, Lee B., 187
Honeywell Corporation, Inc., 371, 551, 554, 557, 558, 560, 564
Horstein, Robert M., 302
Houston, Texas, 394
Houston, University of, 369, 593, 594, 597, 599, 600
Howard University, 585, 591
Hubble Space Telescope, 321, 401
Huntsville, Alabama, 400

I

Ice accretion code, Lewis Research Center, LEWICE, 238
Icing Research Tunnel, IRT, 237, 238
Illinois, University of, Urbana, 573, 588, 590, 593, 597, 600
Improved Stratospheric and Mesospheric Sounder, ISAMS, 102
INCO, 370
Indonesia, 17, 51
Induced Environment Contamination Monitor, IECM, 245, 289
Industrial Applications Centers, IACs, 359
Industrial Guest Investigator (IGI) Agreement, 360, 361
Inertial Upper Stage, IUS, 317, 318
Informatics General Corporation, 554, 558, 560, 563
Insat, 17, 67–68, 164–165
Institute for Technology Development, ITD, 369, 375
Instrumentation Technology Associates, 373
Interior, U.S. Department of, 13, 16, 398
International Business Machines, IBM, 52, 53, 211, 540, 550, 553, 556, 559, 562, 565, 568
International Fuel Cells Corp., 561
International Telephone and Telegraph, ITT, 551
Invitation for Bid, IFB, 504
Iowa, University of, 571, 574, 578, 580, 584, 587, 590, 593, 595, 598
Ireland, 247
Italy, 57

J

Jacksonville, Florida, 396
Japan, 47, 57
Johannes, Robert P., 391
Johns Hopkins University, 70, 391, 573, 577, 584, 586, 590, 593, 596, 599
Johnson, Harry W., 356
Johnson, Lyndon B., 396
Joint Endeavor Agreements, JEA, 360, 361, 370, 371, 372, 373
Jones, Robert T., 202
Jupiter, 3, 5, 309, 311

K

Kansas, University of, 576, 579, 582
Kayten, Gerald G., 187
Kentron International, Inc., 551, 554, 557
Kerrebrock, Jack, 186
Keyworth, G.A., 177
Kimball, Harold G., 301, 302
Klute Holt Co., 555, 558, 567, 569
Klineberg, John M., 399
Kraft, Christopher C., Jr., 395
Kramer, James, 186
<table>
<thead>
<tr>
<th>Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreiger, Robert, 402</td>
<td></td>
</tr>
<tr>
<td>Krier, Gary E., 356</td>
<td></td>
</tr>
<tr>
<td>Krings, John, 227</td>
<td></td>
</tr>
<tr>
<td>Krug International Corporation, 570</td>
<td></td>
</tr>
<tr>
<td>Kutler, Paul, 187</td>
<td></td>
</tr>
<tr>
<td>Kutyna, Donald J., Major General, 224</td>
<td></td>
</tr>
<tr>
<td>Lamberth, Horace, 396</td>
<td></td>
</tr>
<tr>
<td>Landsat, 3, 12, 13, 16, 32, 33, 42, 43, 44, 79, 122–124, 312, 327, 329, 340</td>
<td></td>
</tr>
<tr>
<td>Langley, Samuel Pierpont, 397</td>
<td></td>
</tr>
<tr>
<td>Large-scale Advanced Propfan, LAP, 195, 196</td>
<td></td>
</tr>
<tr>
<td>Laser Geodynamics Satellite, LAGEOS, 14</td>
<td></td>
</tr>
<tr>
<td>La Soufriere, volcano, 14</td>
<td></td>
</tr>
<tr>
<td>Leasat/Syncom, 17, 61, 62, 73, 157–158</td>
<td></td>
</tr>
<tr>
<td>Lee, Thomas J., 400</td>
<td></td>
</tr>
<tr>
<td>Lemkey, Frank, 20</td>
<td></td>
</tr>
<tr>
<td>Levine, Jack, 187</td>
<td></td>
</tr>
<tr>
<td>Lewis, George W., 399</td>
<td></td>
</tr>
<tr>
<td>Light Detecting and Ranging, LIDAR, 235, 257, 258</td>
<td></td>
</tr>
<tr>
<td>Little, Arthur D., Inc., 371</td>
<td></td>
</tr>
<tr>
<td>Local User Terminal, LUT, 48</td>
<td></td>
</tr>
<tr>
<td>Long Duration Exposure Facility, LDEF, 243, 246, 247, 248, 296, 398</td>
<td></td>
</tr>
<tr>
<td>Louisiana, New Orleans, 400, 401</td>
<td></td>
</tr>
<tr>
<td>Lovelace, Alan M., 388</td>
<td></td>
</tr>
<tr>
<td>Lovell, Robert, 19</td>
<td></td>
</tr>
<tr>
<td>Low, George M., 388, 395</td>
<td></td>
</tr>
<tr>
<td>LTV Aerospace & Defense Co., 560, 564, 569</td>
<td></td>
</tr>
<tr>
<td>Lubarsky, Bernard, 399</td>
<td></td>
</tr>
<tr>
<td>Lucas, William R., 400</td>
<td></td>
</tr>
<tr>
<td>Lunar Roving Vehicle, 401</td>
<td></td>
</tr>
<tr>
<td>Lundin, Bruce T., 399</td>
<td></td>
</tr>
<tr>
<td>Luxenber, Barbara A., 356</td>
<td></td>
</tr>
<tr>
<td>Lyman, Peter T., 394</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Madrid, Spain, 300, 307, 308, 313, 320, 346</td>
<td></td>
</tr>
<tr>
<td>Magnetic Field Satellite, Magsat, 14, 16, 42, 44, 46, 72, 125–127</td>
<td></td>
</tr>
<tr>
<td>Magnetoplasmodynamic, MPD, 252</td>
<td></td>
</tr>
<tr>
<td>Malaysia, 68</td>
<td></td>
</tr>
<tr>
<td>Management & Technical Services, 551, 554, 557, 560, 563, 567</td>
<td></td>
</tr>
<tr>
<td>Management Services, Inc., 561, 563</td>
<td></td>
</tr>
<tr>
<td>Manganiello, Eugene J., 399</td>
<td></td>
</tr>
<tr>
<td>Manned Spaceflight Network, MSFN, 300</td>
<td></td>
</tr>
<tr>
<td>Mariner, 309</td>
<td></td>
</tr>
<tr>
<td>Mark, Hans, 388, 390</td>
<td></td>
</tr>
<tr>
<td>Mars, 240, 309, 345, 398</td>
<td></td>
</tr>
<tr>
<td>Marshall, General George C., 400</td>
<td></td>
</tr>
<tr>
<td>Martin, John J., 186, 187</td>
<td></td>
</tr>
<tr>
<td>Martin Marietta Corporation, 372, 540, 541, 544, 547, 550, 553, 556, 559, 562, 565, 568</td>
<td></td>
</tr>
<tr>
<td>Martin Thiokol Corporation, 52, 540, 550, 556, 559, 562, 565, 568</td>
<td></td>
</tr>
<tr>
<td>Maryland, University of, College Park, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598</td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology, 248, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598</td>
<td></td>
</tr>
<tr>
<td>Massively Parallel Processor, MPP, 257</td>
<td></td>
</tr>
<tr>
<td>Materials Experiment Assembly, MEA, 25, 26</td>
<td></td>
</tr>
<tr>
<td>Materials Processing in Space, MPS, 360, 361</td>
<td></td>
</tr>
<tr>
<td>Materialwissenschaftliche Autonome Experimente unter Schwerelosigkeit, MAUS, 25, 26</td>
<td></td>
</tr>
<tr>
<td>McCarthy, John F., 399</td>
<td></td>
</tr>
<tr>
<td>McCartney, Forrest, 396</td>
<td></td>
</tr>
<tr>
<td>McCoy, Caldwell, Jr., 19</td>
<td></td>
</tr>
<tr>
<td>McDonnell Douglas Corporation, 51, 52, 196, 197, 204, 210, 221, 361, 370, 540, 541, 544, 547, 550, 553, 556, 559, 562, 565, 568</td>
<td></td>
</tr>
<tr>
<td>McElroy, John, 19, 393</td>
<td></td>
</tr>
<tr>
<td>MCI, 53</td>
<td></td>
</tr>
<tr>
<td>McIver, Duncan E., 188</td>
<td></td>
</tr>
<tr>
<td>Measurement of Air Pollution From Satellites, MAPS, 26, 27</td>
<td></td>
</tr>
</tbody>
</table>
INDEX

Mechanical Technology, Inc., 551, 554, 557, 561, 564
Memorandum of Agreement, MOA, 374, 375
Memorandum of Understanding, MOU, 371, 372, 373, 374, 375
Mercury, Project, 309, 396, 398, 401
Mercury Consolidated Inc., 554
Meredith, Leslie H., 393
Meteoroid and Exposure Module, MEM, 247, 248
Miami, Florida, 396
Michigan, University of, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
Micro Craft, Inc., 567
Micro-Gravity Research Associates, 371
Microwave Limb Sounder, MLS, 102
Middle East, 57, 65
Minnesota, University of, 572, 575, 579, 582, 588, 591
Mission Adaptive Wing, MAW, 198
Mission Needs Statement, 502
Mission Peculiar Equipment Support Structure, MPESS, 23, 24, 27
Mississippi, Hancock County, 402
Mitre Corp., 587, 593, 596
Modular Computer Systems, Inc., 552
Mojave Desert, California, 196, 300, 307, 344
Moon, 240, 396, 401
Moore, Jesse W., 395
Morelos, Mexico, 17, 68, 73, 166
Mouat, David A., 375
Mount St. Helens, 14, 29
Multimission Modular Spacecraft, MMS, 31, 32, 33, 43
Multispectral Scanner, MSS, 42–44
Muroc, California, 392
Murray, Bruce C., 394
Myers, Dale D., 388
N
NASA Communications, NASCOM, 303, 305, 307, 320
NASA End-to-End Data System, NEEDS, 256
NASA Inspector General, 513
National Academy of Sciences, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
National Advisory Committee for Aeronautics, NACA, 175, 237, 383, 390, 392, 398, 399, 403
National Aeronautics and Space Act, 4, 31, 175, 356, 358, 499
National Aerospace Plane, NASA, 178, 182, 221–228
National Aeronautics and Atmospheric Administration, NOAA, 12, 14, 15, 16, 17, 28, 30, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 48, 49, 72, 86, 107–115, 307
National Academy of Sciences, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
National Executive Committee, 34, 35
National Oceanic and Atmospheric Administration, NOAA, 12, 14, 15, 16, 17, 28, 30, 32, 33, 34, 35, 36, 37, 38, 42, 43, 44, 48, 49, 72, 86, 107–115, 307
National Science Foundation, 311
National Scientific Balloon Facility, 312
National Space Policy, 5, 240, 357, 358, 359
National Transportation Safety Board, 234
Naumann, Robert, 20
Naval Research Laboratory, 393
Navy, U.S., 17, 60, 70, 199, 204, 402
Neptune, 3, 308, 311, 343
Netherlands, The, 247
Network Control Center, 307, 313, 333
New England, 501, 537
New Guinea, Papua, 67
New Hampshire, University of, 578, 581, 583, 587, 590, 593, 596, 599
New Mexico State University, 572, 575, 578, 581, 584, 587, 590, 593, 596, 598
Nicks, Oran W., 397
Nighttime/Daylight Optical Survey of Thunderstorm Lightning, NOSL, 22
Nimbus, 12, 14, 15, 28, 32, 33, 37, 48, 86, 340, 341
North America, 39, 48, 57
North American Aircraft, 214
North Atlantic Treaty Organization, NATO, 62, 63, 159
Northeast Radio Observatory, 576, 585, 588
Northrop Corporation, Worldwide Aircraft, 200, 551, 552, 554, 555, 557, 558, 560, 561, 563, 566, 567, 570
Norway, 17
NOVA, 70, 169–170
NSI Technology Services Corp., 569
O

Oak Ridge National Laboratory, 253
Office of Advanced Research and Technology, OART, 179
Office of Management and Budget, 497
Office of Science and Technology Policy, 177
Ohio State University, 369, 572, 576, 585, 593, 597, 599
Oklahoma State University, 575, 579, 581, 584, 591, 593, 597, 600
Old Dominion University, 572, 575, 579, 582, 584, 587, 590, 594, 596, 599
Olstad, Walter B., 186
Ontario, Canada, 17, 37, 48, 57, 64, 247
Orbital Sciences Corporation, 371, 565, 569
Orbital Transfer Vehicle, 251
Orbiting Satellite Carrying Amateur Radio, Oscar, 69
Organization of the Petroleum Exporting Countries, OPEC, 190
Orient Express, 182
Orlando, Florida, 235
Ott, Richard H., 356

P

Page, George F., 396
Paine, Thomas O., 388
Palapa, 17, 51, 57, 67, 69, 73, 166–167
Pan Am Pacific Satellite Corporation, 55
Pan American World Airways, Services, 550, 554, 557, 560, 563, 565, 568
Parkes, Australia, 311, 312
Parks, Robert J., 394
Particle Environment Monitor, PEM, 103
Pasadena, California, 300, 303, 313, 320, 394
Patrick Air Force Base, 306
Payload Assist Module, PAM, 17, 51, 52
Pegasus, 401
Pennsylvania State University, 369, 572, 575, 578, 581, 585, 588, 591, 593, 596, 599
Perkin Elmer Corporation, 550, 553, 556, 559, 563, 566, 569
Petersen, Richard H., 397
Petrone, Rocco A., 400
Philippines, 68
Phobos, 312
Pickering, William H., 394
Pioneer, 309, 311, 345
Pittsburgh, University of, 572
Planning Research Corp., 550, 553, 556, 559, 562, 566, 568
Plum Brook Station, 399
Poker Flats Research Facility, 312
Polar Orbiting Geophysical Observatory, POGO, 45
Povinelli, Frederick P., 187
Pratt & Whitney, 191, 210, 212
Princeton University, 572, 575, 578, 581, 585, 588, 590, 593, 596, 599
Procurement Request, PR, 502, 503, 504
Program Communications Support Network, PCSN, 320, 321, 339
Propfan Test Assessment, PTA, 195, 197
Propulsion Systems Laboratory, 399
Pseudorandom noise, PN, 350
Puerto Rico, 50, 55
Purdue University, 571, 574, 577, 581, 584, 588, 591
Quality Short-haul Research Aircraft, QSRA, 181, 203, 204
Quann, John J., 393
Quiet, Clean, Short-haul Experimental Engine, QCSEE, 204

R

Rantek, 374
Raytheon Services Company, 551, 554, 557, 560, 563, 566, 569
RCA, Satcom, Americom, 17, 35, 47, 50, 51, 52, 53, 70, 72, 132–138, 540, 551, 553, 559, 562
Reagan, Ronald, 3, 6, 11, 47, 182, 225, 355, 357, 464
Reck, Gregory, 188
Redstone Arsenal, 400, 401
Rees, Eberhard F.M., 400
Reis, Victor, 177
Rensselaer Polytechnic Institute, 582
Request for Proposal, RFP, 502, 504
Rescue Coordination Center, 48
Research and Program Management, R&PM, 497, 513
Research Triangle Institute, 573, 576, 582, 585, 588, 590, 594, 597
RMS Technologies, Inc., 558, 564, 566
Robertson, Floyd, 19
Roecker, John H., 302
Rogers Commission, 236, 389
Rogers Dry Lake, 391
Rohr Industries, 194, 195
Rolls Royce, 210
Rose, James T., 187, 355
Rosen, Cecil C., III, 187
INDEX

Rosen, Robert, 187, 188
Rosman, North Carolina, 305, 348
Ross, Lawrence J., 399
Ross, Miles, 396
Rotor Systems Research Aircraft, RSRA, Sikorsky Aircraft Division, 181, 205–208
Salisbury, Maryland, 402
Sander, Michael, 20
Sandusky, Ohio, 399
San Jose State University, California, 573, 576, 585, 597, 600
Santa Barbara Research Center, 551
Santiago, Chile, 306, 307, 348
Satellite Business Systems, SBS, 17, 51–54, 72, 139–141
Satellite Control Center, 34
Saturn, 3, 309, 310, 311, 397, 401
Saudi Arabia, 65
Sauer Mechanical, Inc., 558
Scherer, Lee R., 391, 396
Schmoll, Kathryn, 20
Schneider, William, 301
Scott, David R., 391
Scott Science and Technology, Inc., 374
Seamans, Robert C., 388
Search and Rescue, SAR, 36, 37, 95, 257, Search and Rescue Satellite Aided Tracking, SARSAT, 17, 37, 47, 48, 49
Seasat, 14
Senate, U.S., 227, 228
Senegal, Dakar, 305, 307, 344
Sharp, Edward R., 399
Shepard, Alan B., 401
Short takeoff and landing, STOL, 180, 181, 203, 204, 210
Short takeoff and vertical landing, STOVL, 181, 203
Shuttle Carrier Aircraft, SCA, 241
Shuttle Imaging Radar, SIR-A, 22
Shuttle Multispectral Infrared Radiometer, 22
Sierra Negra, 14
Silverstein, Abe, 399
Singapore, 68
Singer Company, 551, 554, 557, 560, 563, 566, 570
Sjoberg, Sigurd A., 395
Slone, Henry O., 187
Small Business Administration, 506
Small Business Innovation Development Act, 361
Small Business Innovation Research, SBIR, 356, 359, 361, 362, 377, 378, 379
Small Business Technology Transfer, STTR, 362
Smith, Richard G., 396, 400
Smithsonian Institution, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
Smylie, Robert E., 301, 393
Socorro, New Mexico, 311
Solar Array Experiment, SAE, 246
Solar Backscatter Ultraviolet, SBUV, 37
Solar Cell Calibration Facility, SCCF, 246
Solar Mesospheric Explorer, SME, 69
Solar Stellar Irradiance Comparison Experiment, SOLSTICE, 103
Solar Ultraviolet Spectral Irradiance Monitor, SUSIM, 103
Space Communications Company, 551, 558, 559
Space Flight, Control, and Data Communications, SFC&DC, 303, 304, 497
Space Industries, Inc., 372
Space Services, Inc., 373
Space Systems Development Agreement, SSDA, 361, 373, 374, Space Tracking and Data Acquisition Network, STADAN, 300
Space Transportation System, STS, 5, 6, 7, 14, 21, 55, 69, 348, 351
Spaceco, Ltd., 371
SPACEHAB, Inc., 374
Spacelab, 321, 329, 341
Spacelab Data Processing Facility, 321
Sperry Corporation, 373, 551, 554, 557, 560, 563
Spinak, Abraham D., 402, 403
SRI International Corp., 571, 575, 578, 581, 584, 587, 591
Stacked Oscars on Scout, SOOS, 70, 71, 74, 171–172
Stanford University, 502, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598
Stennis, John C., Senator, 402
Sterling Federal Systems, Inc., 566, 569
Stevenson-Wydler Technology Act of 1980, 359
Stofan, Andrew, 19, 399
Stone, Barbara A., 356
Strategic Air Command, 60
Stratospheric Aerosol and Gas Experiment, SAGE, 14, 29, 30, 31, 72, 100
Stratospheric Aerosol Measurement II, 28
Suuitland, Maryland, 35
Sun, 29, 32, 33, 69, 318
Superhigh frequency, SHF, 69
Surrey, University of, England, 69
Sverdrup Technology, Inc., 563, 566, 569
Switzerland, 247
Synchronous Meteorological Satellites, SMS, 12, 38
Systems Development Corporation, 551, 554, 557, 560, 563
Syvertson, Clarence A., 390
Texas A&M University, 369, 575, 578, 581, 584, 588, 597, 599
Texas, University of, at Austin, 574, 578, 581, 584, 587, 590, 593, 596, 599; and at Dallas, 572, 575, 579, 582
Thematic Mapper, TM, 42, 43
Thome, Pitt, 19
Thompson, James R., Jr., 400
3M Company, 201, 372
Tidbinbilla, Australia, 311, 312, 343
Tile Gap Heating, TGH, 245, 289
Tilford, Shelby G., 19
Total Ozone Monitoring System, 15
Tokyo, 182
Total Energy Control System, TECS, 231
Townsend, John W., Jr., 393
Transonic Aircraft Technology, TACT, 198
Transportation, U.S. Department of, 176, 192
Trimble, George S., 395
TRW, 47, 314, 352, 550, 553, 556, 559, 562, 565, 568
Tula Peak, 306
Ultrahigh frequency, UHF, 60, 62, 69
Union Oil Company, 375
Unisys Corp., 566, 569
United Kingdom, 17, 34, 48, 57, 210, 247
United Space Boosters, Inc., 540, 550, 553, 556, 559
United Technologies Corporation, 192, 205, 540, 550, 553, 556, 559, 562, 565, 568
Universities Space Research, 571, 575, 577, 580, 583, 586, 589, 592, 595, 598
University Corporation for Atmospheric Research, 583, 586, 589, 592, 595
UoSAT, 69, 73, 168–169
Upper Atmospheric Research Satellites, UARS, 15, 28, 31, 32, 33, 84, 87, 102, 104
Uranus, 3, 184, 255, 311, 312, 345
USBI Booster Production Co., 562, 565, 568
Utah State University, 573, 587
Utsman, Thomas E., 396

Tasmania, University of, 312, 347
Taylor, Charles A., 301
Technology Transfer, 92, 360
Technology Utilization, 363, 364, 366
Teledyne Industries, Inc., 551, 553, 556, 560, 563, 565, 568
Television Infrared Observation Satellite, TIROS, 12, 14, 33–38, 48
Telstar, 17, 50, 51, 73, 129–130
Tennessee, University of, Space Institute, 369
Terhune, Charles H., Jr., 394
Terminal-Configured Vehicle, TCV, 229, 232
Testardi, Louis R., 18, 20

NASA HISTORICAL DATA BOOK
INDEX

V

Vandenberg Air Force Base, California, 305, 306, 320, 397

Vanderbilt University, 369

Vanguard, Project, 393

Vega, Soviet spacecraft, 312

Veneri, Samuel L., 187

Venus, 309, 312, 345

Vernamonti, Len, Colonel, 226

Vertical short takeoff and landing, VSTOL, 181, 203, 205, 208

Vertical takeoff and landing, VTOL, 181, 203, 210

Very high frequency, VHF, 67, 69

Very Large Array, 311

Viking, project, 5, 398

Virginia Islands, 55

Virginia Electric & Power Company, 552, 555

Virginia Polytechnic Institute, 572, 575, 578, 580, 584, 587, 590, 594, 597, 599

Visible/Infrared Spin Scan Radiometer, VISSR, 39, 40

von Braun, Wernher, 400, 401

Vought Corporation, 552, 554

Voyager, 3, 5, 184, 255, 308, 309, 310, 311, 312, 343, 345, 347

W

W&J Construction Corp., 569

Washington, University of, 573, 575, 578, 581, 584, 587, 590, 593, 596, 599

Washington University, St. Louis, 576, 579, 581, 585, 588, 591, 594

Webb, James E., 388

Weitz, Paul J., 395

Westar Satellite System, 17, 50, 51, 54, 55, 56, 72, 142–144

Western Union, Spacecom, 51, 54, 55, 301, 314, 351

Westinghouse Electric Corporation, 551, 555, 557, 561, 563, 567

Whitcomb, Richard T., 197

White House, 358

White Sands, Las Cruces, New Mexico, 42, 44, 300, 305, 306, 307, 313, 395

White Sands Ground Terminal, 307, 315, 316, 318, 350

White Sands Missile Range, 312

White Sands Test Facility, 395

Whitten, Raymond, 355

Wild, Jack W., 301, 359

Williams, Dell P., III, 187

Williams, Walter C., 391

Wind Imaging Interferometer, WINDII, 102

Wisconsin, University of, 369, 571, 574, 577, 580, 583, 586, 589, 592, 595, 598

Wood, H. William, 301

Work Breakdown Structure, WBS, 502

World Meteorological Organization, 15

World War II, 219, 237, 392, 399

Wright, Linwood C., 187, 188

Wright-Patterson Air Force Base, 195, 214

Wyle Laboratories, 566, 569

Y

Young, A. Thomas, 390, 393

Z

Zero One Systems, Inc., 570
ABOUT THE COMPILER

Judy A. Rumerman is a professional technical writer who has written or contributed to numerous documents for the National Aeronautics and Space Administration. She has been the author of documents covering various spaceflight missions, the internal workings of NASA’s Goddard Space Flight Center, and other material used for training. She was also the compiler of *U.S. Human Spaceflight: A Record of Achievement, 1961–1998*, a monograph for the NASA History Office detailing NASA’s human spaceflight missions.

Ms. Rumerman has degrees from the University of Michigan and George Washington University. She grew up in Detroit and presently resides in Silver Spring, Maryland.
THE NASA HISTORY SERIES

Reference Works, NASA SP-4000

Link, Mae Mills. Space Medicine in Project Mercury (NASA SP-4003, 1965).

615

Management Histories, NASA SP-4100

Levine, Arnold S. Managing NASA in the Apollo Era (NASA SP-4102, 1982).
Fries, Sylvia D. NASA Engineers and the Age of Apollo (NASA SP-4104, 1992).
Project Histories, NASA SP-4200

SP-4207 not published.

Newell, Homer E. Beyond the Atmosphere: Early Years of Space Science (NASA SP-4211, 1980).

Wallace, Lane E. Airborne Trailblazer: Two Decades with NASA Langley’s Boeing 737 Flying Laboratory (NASA SP-4216, 1994).

Butrica, Andrew J. Editor. Beyond the Ionosphere: Fifty Years of Satellite Communication (NASA SP-4217, 1997).

Heppenheimer, T.A. The Space Shuttle Decision: NASA’s Search for a Reusable Space Vehicle (NASA SP-4221, 1999).

Swanson, Glen E. Editor. “Before This Decade Is Out . . .”: Personal Reflections on the Apollo Program (NASA SP-4223, 1999).
Center Histories, NASA SP-4300

General Histories, NASA SP-4400

Acronym: ACRIM II.
Category: Atmospheric Research Center Acronyms. Meaning / Stands for The UARS/ACRIM II instrument consists of three Active Cavity Radiometers (ACR's) (Type V). The ACR's are electrically self-calibrated pyrheliometers, which are uniformly sensitive from the extreme UV to the far infrared. The principle of measuring total solar irradiance is that the heating effect of irradiant flux on a detector is compared with that of electrical power dissipated in a heating element in intimate thermal contact with the detector. The ACRIM I, ACRIM II, ERB and ERBS results shown in detail in figure 2.2.1.1 are based on the mean value daily observation database, normalized to the mean earth-sun distance. It can be seen that the gross features of the results, the decline from solar cycle 21 maximum to solar minimum and the increase to solar maximum of cycle 22 and the decrease toward the next solar minimum are basically the same for the observations from these experiments.