Microbial population genetics is a rapidly advancing field of investigation with relevance to many areas of science. The subject encompasses theoretical issues such as the origins and evolution of species, sex and recombination. Population genetics lays the foundations for tracking the origin and evolution of antibiotic resistance and deadly infectious pathogens and is also an essential tool in the utilization of beneficial microbes.

Written by leading researchers in the field, this invaluable book details the major current advances in microbial population genetics and genomics. Distinguished international scientists introduce fundamental concepts, describe genetic tools and comprehensively review recent data from SNP surveys, whole-genome DNA sequences and microarray hybridizations. Chapters cover broad groups of microorganisms including viruses, bacteria, archaea, fungi, protozoa and algae. A major focus of the book is the application of molecular tools in the study of genetic variation. Topics covered include microbial systematics, comparative microbial genomics, horizontal gene transfer, pathogenic bacteria, nitrogen-fixing bacteria, cyanobacteria, microalgae, fungi, malaria parasites, viral pathogens and metagenomics.

An essential volume for everyone interested in population genetics and highly recommended reading for all microbiologists.

Chapter 1. Recent Advances in Understanding Microbial Systematics. Radhey S. Gupta and Beile Gao
Chapter 2. Comparative Microbial Genomics: Analytical Tools, Population Genetic Patterns and Evolutionary Implications. Yingqin Luo, Kui Lin, Jianping Xu
Chapter 3. Patterns of Horizontal Gene Transfer in Bacteria. Weilong Hao and G. Brian Golding
Chapter 4. Population Genetics of Human Pathogenic Bacteria: Implications for Source Tracking and Rapid Identification. Ruifu Yang, Yujun Cui, Yanjun Li and Yanfeng Yan
Chapter 6. The Population Genetics of Cyanobacteria. Scott R. Miller
Chapter 8. Population Genetics of Fungal Mutualists of Plants. Teresa E. Pawlowska
Chapter 11. The Population Genetics and Epidemiology of Human Viral Pathogens. Fernando González Candelas, Rafael Sanjuán

Order from:
CURRENT BOOKS OF INTEREST

☞ MALDI-TOF Mass Spectrometry in Microbiology
Edited by: Markus Kostrzewa and Sören Schubert (Published: 2016)

☞ Aspergillus and Penicillium in the Post-genomic Era
Edited by: Ronald P. de Vries, Isabelle Benoit Gelber and Mikael Rørdam Andersen (Published: 2016)

☞ The Bacteriocins: Current Knowledge and Future Prospects
Edited by: Robert L. Dorit, Sandra M. Roy and Margaret A. Riley (Published: 2016)

☞ Omics in Plant Disease Resistance
Edited by: Vijai Bhadauria (Published: 2016)

☞ Acidophiles: Life in Extremely Acidic Environments
Edited by: Raquel Quatrini and D. Barrie Johnson (Published: 2016)

☞ Climate Change and Microbial Ecology: Current Research and Future Trends
Edited by: Jürgen Marxsen (Published: 2016)

☞ Biofilms in Bioremediation: Current Research and Emerging Technologies
Edited by: Gavin Lear (Published: 2016)

☞ Microalgae: Current Research and Applications
Edited by: Maria-Nefeli Tsaloglou (Published: 2016)

☞ Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
Edited by: Hideharu Shintani and Akikazu Sakudo (Published: 2016)

☞ Virus Evolution: Current Research and Future Directions
Edited by: Scott C. Weaver, Mark Denison, Marilyn Roossinck and Marco Vignuzzi (Published: 2016)

☞ Arboviruses: Molecular Biology, Evolution and Control
Edited by: Nikos Vasilakis and Duane J. Gubler (Published: 2016)

☞ Shigella: Molecular and Cellular Biology
Edited by: William D. Picking and Wendy L. Picking (Published: 2016)

☞ Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
Edited by: Anna M. Romani, Helena Guasch and M. Dolors Balaguer (Published: 2016)

☞ Alphaviruses: Current Biology
Edited by: Suresh Mahalingam, Lara Herrero and Belinda Herring (Published: 2016)

☞ Thermophilic Microorganisms
Edited by: Fu-Li Li (Published: 2015)

☞ Flow Cytometry in Microbiology: Technology and Applications
Edited by: Martin G. Wilkinson (Published: 2015)
“an impressive group of experts” (ProtoView)

☞ Probiotics and Prebiotics: Current Research and Future Trends
Edited by: Koen Venema and Ana Paula do Carmo (Published: 2015)

☞ Epigenetics: Current Research and Emerging Trends
Edited by: Brian P. Chadwick (Published: 2015)
“this is one text you don’t want to miss” (Epigenie); “up-to-date information” (ChemMedChem)

☞ Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications
Edited by: Andreas Burkovski (Published: 2015)
“Without question a valuable book” (BIOSpektrum)

☞ Advanced Vaccine Research Methods for the Decade of Vaccines
Edited by: Fabio Bagnoli and Rino Rappuoli (Published: 2015)

Full details at www.caister.com
Microbial population genetics is a rapidly advancing field of investigation with relevance to many areas of science. The subject encompasses theoretical issues such as the origins and evolution of species, sex and recombination. Population genetics lays the foundations for tracking the origin and evolution of antibiotic resistance and deadly infectious pathogens and is also an essential tool in the utilization of beneficial microbes. We use the term “population” to describe an assemblage of co-existing microbial genomes in an environment that are similar enough to map to the context of the same reference genome. Cells within a population (i.e., all cells that would have classified as the same “species” or “strain” for whatever these terms mean to you) will share the vast majority of their genomes in the sequence space. Microbial genetics has traditionally been a field of basic science research as microorganisms offer several features that facilitate the study of evolutionary processes. Short generation time, haploid genome, ease of culturing, and their abundance facilitate such studies. However, they offer some complexities as well; clonal and asexual