METALS FABRICATION

UNDERSTANDING THE BASICS

Edited by F.C. Campbell

ASM International®
Materials Park, Ohio 44073-0002
www.asminternational.org
Flake Campbell passed away shortly after completing his work on this volume. His 38-year career at The Boeing Co. was split equally between engineering and manufacturing. He worked in the engineering laboratories, manufacturing R&D, engineering on four production aircraft programs, and in production operations. He was a 2001 recipient of Boeing’s Senior Technical Fellow award for accomplishments in his field. At retirement, Campbell was a director and senior technical fellow in the field of manufacturing technology within Boeing’s Phantom Works service. Campbell received an M.B.A. from Maryville University in St. Louis, 1994, and an M.S. in metallurgical engineering, from the University of Missouri at Rolla, 1972.

Flake loved metallurgical engineering, a lifelong vocation that culminated in the authorship and publication of numerous educational and reference books. He wrote or edited ten books including these ASM International titles: Elements of Metallurgy and Engineering Alloys, 2008; Structural Composite Materials, 2010; Joining—Understanding the Basics, 2011; Phase Diagrams—Understanding the Basics, 2011; Lightweight Materials—Understanding the Basics, 2012; Fatigue and Fracture—Understanding the Basics, 2012; Inspection of Metals—Understanding the Basics (2013). Metals Fabrication—Understanding the Basics was the final book he authored before his death in 2013.
## Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td><strong>CHAPTER 1</strong></td>
<td>Primary Mill Fabrication</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ironmaking</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Steelmaking</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Alloy Steel Refining</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Stainless Steel Refining</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Ingot Casting</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Continuous Casting</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Rolling</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Aluminum Production</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Titanium Production</td>
<td>42</td>
</tr>
<tr>
<td><strong>CHAPTER 2</strong></td>
<td>Casting</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Casting Alloys</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Solidification</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Casting Defects</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Gating and Risering</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Melting Methods</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Casting Methods</td>
<td>71</td>
</tr>
<tr>
<td><strong>CHAPTER 3</strong></td>
<td>Bulk Deformation</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Hot Working</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Cold Working</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Forging</td>
<td>109</td>
</tr>
<tr>
<td></td>
<td>Hammers and Presses</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Die Design and Materials</td>
<td>113</td>
</tr>
</tbody>
</table>
Die Steels ................................................. 116
Friction and Lubrication in Forging ................. 117
Forging Imperfections ................................. 119
Forging Processes ....................................... 122
Open-Die Forging ........................................ 122
Closed-Die Forging ....................................... 124
Hot Upset Forging ....................................... 130
Roll Forging ............................................. 132
High-Energy-Rate Forging ......................... 134
Ring Rolling ............................................. 137
Rotary Swaging of Bars and Tubes ................... 138
Radial Forging ........................................... 140
Rotary Forging ........................................... 141
Isothermal and Hot-Die Forging ................... 144
Precision Forging ........................................ 146
Cold Forging ............................................ 148
Cold Extrusion ........................................... 151
Hot Extrusion ............................................ 154
Drawing .................................................. 157

CHAPTER 4

Forming .................................................. 163
Preparation of Plate and Flat Sheet .................. 163
Forming .................................................. 169
Die Materials for Sheet Metal Forming ................ 170
Selection and Use of Lubricants in Forming Sheet Metal ...... 173
Blanking .................................................. 176
Piercing ............................................... 178
Fine-Edge Blanking and Piercing .................... 178
Bending and Springback ................................ 180
Defects in Sheet Metal Parts ......................... 181
Press Bending .......................................... 183
Press-Brake Forming ................................... 186
Deep Drawing ........................................... 189
Fundamentals of Drawing ............................. 190
Stretch Forming ......................................... 194
Spinning ............................................... 196
Rubber-Pad Forming .................................... 199
Fluid-Cell Process ...................................... 201
Fluid Forming .......................................... 202
Drop Hammer Forming ................................ 203
Electromagnetic Forming (EMF) .................... 204
Superplastic Forming (SPF) ......................... 206
### CHAPTER 5
**Machining** ........................................ 213
- Types of Machining Processes .................. 213
- Types of Machining Equipment ................. 215
- Workpiece Machinability ....................... 215
- Dimensional and Surface Finish Tolerances .... 217
- Surface Integrity ................................. 217
- The Mechanics of Chip Formation ............... 222
- Tool Wear in Metal Cutting ..................... 225
- Cutting Tool Materials .......................... 229
- Application/Grade Selection ...................... 235
- Cutting Fluids .................................. 237
- Basic Chip Producing Processes and Equipment .. 241
- Machining Parameters ............................ 250
- Forces and Power ................................ 254
- Grinding ........................................ 257
- Grinding Wheels ................................ 258
- Nontraditional Machining Processes ............ 261

### CHAPTER 6
**Heat Treatment** ................................. 271
- The Iron-Carbon System ......................... 272
- Annealing ....................................... 276
- Normalizing ..................................... 277
- Spheroidizing .................................. 277
- Quench Hardening ................................ 278
- Continuous Cooling Transformation Diagrams ... 279
- Austenitizing ................................... 281
- Quenching ...................................... 283
- Hardenability ................................... 286
- Tempering ....................................... 288
- Interrupted Quenching .......................... 291
- Tempered Embrittlement ......................... 295
- Surface Hardening of Steel ..................... 297
- Flame Hardening ................................ 298
- Induction Hardening ............................ 299
- Case Hardening .................................. 300
- Carburizing .................................... 301
- Nitriding ........................................ 310
- Carbonitriding .................................. 313
- Precipitation Hardening ......................... 314
- Precipitation Hardening of Aluminum Alloys ... 317
# Contents

## CHAPTER 7
### Finishing and Coating ................................. 325
- Environmental Regulations ........................................ 325
- Cleaning ......................................................... 326
-Abrasive Finishing Methods ....................................... 330
-Polishing and Buffing .............................................. 331
-Lapping .......................................................... 334
-Electropolishing .................................................. 335
-Mass Finishing .................................................... 335
-Rust-Preventive Compounds ...................................... 338
-Phosphate Conversion Coatings .................................. 338
-Chromate Conversion Coatings .................................. 339
-Electroplating Processes .......................................... 339
-Selective Plating Processes ....................................... 343
-Electroless Plating Processes .................................... 344
-Hot Dip Coating of Steels ........................................ 346
-Babbitting ......................................................... 348
-Weld-Overlay Coatings ............................................ 349
-Thermal Spray Coatings ........................................... 350
-Porcelain Enameling .............................................. 353
-Ceramic Coatings .................................................. 353
-Pack Cementation .................................................. 355
-Chemical Vapor Deposition ....................................... 357
-Physical Vapor Deposition ........................................ 360
-Ion Implantation .................................................... 365
-Painting ............................................................ 365

## CHAPTER 8
### Powder Metallurgy ........................................ 373
- Powder Characteristics ......................................... 374
- Powder Production Processes .................................... 380
- Powder Treatments ............................................... 388
- Powder Consolidation .......................................... 393
- Powder Metallurgy Part Defects ................................ 406
- Secondary Operations ............................................ 408

Index ............................................................... 413
Preface

This book deals with the fabrication processes used to produce metallic products. It is intended primarily for technical personnel who want to learn more about metallic fabrication processes. This book is useful to designers, structural engineers, materials and process engineers, manufacturing engineers, technicians, production personnel, management, faculty, and students.

The first chapter gives an introduction to the processes used at the mill to produce metals and their alloys. Procedures for the primary melting, casting, and hot rolling of steel, aluminum, and titanium are covered. The importance of ladle metallurgy and secondary melting operations, such as vacuum induction melting, vacuum arc remelting, electroslag remelting, and stainless steel refining by argon oxidation decarburization, are emphasized. Both ingot casting and continuous casting are included. Rolling methods covered include hot and cold rolling, along with annealing procedures (batch and continuous).

The second chapter on casting discusses the basics of solidification, casting imperfections, and the important casting methods—sand casting, plaster and shell casting, evaporative pattern casting, investment casting, permanent mold casting, cold and hot chamber die casting, squeeze casting, semisolid metal processing, and centrifugal casting.

The third chapter is on the bulk deformation processes—forging, extrusion, and drawing. The differences between hot and cold working are initially covered. This is followed by a discussion of forging including hammers and presses, die design and materials, lubrication, forging defects, and forging processes. Forging process descriptions are given for open-die forging, closed-die impression forging, hot upset forging, roll forging, high-energy-rate forging, ring rolling, radial forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter concludes with cold and hot extrusion and the various drawing operations.

Sheet metal forming processes (fourth chapter) usually employ hot or cold rolled sheet or strip material that is formed into a desired shape. Topics covered include cutting of plate and flat sheet, die materials for forming,
forming lubricants, and the forming processes of blanking, piercing, fine-edge blanking and piercing, press bending and press-brake forming, deep drawing, stretch forming, spinning, rubber-pad forming, fluid-cell forming, drop hammer forming, electromagnetic forming, and superplastic forming.

The fifth chapter covers traditional, abrasive, and nontraditional machining processes with an emphasis on conventional machining. Topics include workpiece machinability, dimensional and surface finish requirements, surface integrity, the mechanics of chip formation, tool wear and cutting tool materials, cutting and grinding fluids, machining equipment, machining parameters, and machining forces and power requirements.

The sixth chapter discusses the various heat treatments used to thermally alter the property of the metal. Included are steel heat treatments—annealing, stress relieving, normalizing, spheroidizing, and hardening by quenching and tempering. Direct and interrupted quenching processes are explained. The second section of the chapter discusses the various surface-hardening processes, such as flame hardening, induction hardening, case hardening by carburization, nitriding, and carbonitriding. The third part of the chapter covers precipitation hardening with an emphasis of aluminum alloys. However, precipitation hardening is also used extensively to strengthen magnesium alloys, nickel-base superalloys, beryllium-copper alloys, and precipitation-hardening (PH) stainless steels.

The seventh chapter covers the rather wide topic of surface finishing and coatings. Areas included are cleaning methods, abrasive finishing, polishing and buffing, electropolishing, mass finishing methods such as barrel and vibratory finishing, phosphate and chromate conversion coatings, electroplating (e.g., copper plating, chromium plating, and cadmium plating), electroless plating, weld overlay coatings, thermal spray coatings, high-temperature ceramic coatings, and chemical vapor deposition (CVD) and physical vapor deposition (PVD).

Powder metallurgy (eighth chapter) is the process of blending fine powdered materials, pressing them into a desired shape or form (compacting), and then heating the compressed material in a controlled atmosphere to bond the material together (sintering). The powder metallurgy process generally consists of four basic steps: powder manufacture, powder blending, compacting, and sintering. Compacting is generally performed at room temperature, and the elevated-temperature process of sintering is usually conducted at atmospheric pressure. Full-density processes are also included. Optional secondary processing is often used to obtain special properties or enhanced precision.

I would like to acknowledge the help and guidance of Karen Marken, ASM International, and the staff at ASM for their valuable contributions.

F.C. Campbell
St. Louis, Missouri
October 2012
Metal Fabrication - Types of Fabrication. Choosing a fabrication method suited to a given project depends on part geometry, the product’s intended purpose, and the materials used in crafting it. Common custom metal fabrication processes are as follows:

Casting. Cutting. Metal fabrication. Quite the same Wikipedia. Just better. Metal fabrication usually starts with drawings with precise dimensions and specifications. Fabrication shops are employed by contractors, OEMs and VARs. Typical projects include loose parts, structural frames for buildings and heavy equipment, and stairs and hand railings. As with other manufacturing processes, both human labor and automation are commonly used.

In today’s update the first crew finished up the windows, doors, metal, and breezeway to the house! Check it out for finished pictures. Progress Report 6 – 30×48′ Pole Barn build. In today’s update, the crew raises the trusses with a custom skid steer attachment, finish the framing, and start installing the insulation and metal sheeting. Progress Report 5 – 30×48′ Pole Barn build. Today we trench with a mini excavator, have footings poured for the future bathroom, make a drill bit, and the crew gets the walls up and framed in one day!