The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

Seven-digit Article CID Number.

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510629318

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org
Copyright ©2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-first publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numbers and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

vii Authors
ix Conference Committee
xiii Introduction

SESSION 1 TELESCOPES

11119 04 Mirror module design of x-ray telescopes of eXTP mission [11119-3]

SESSION 2 MONOCRYSTALLINE-SILICON OPTICS

11119 07 Next generation x-ray optics for astronomy: high resolution, lightweight, and low cost [11119-6]
11119 08 Fabrication of monocrystalline silicon x-ray mirrors [11119-7]
11119 0A Recent advances in the alignment of silicon mirrors for high-resolution x-ray optics [11119-10]
11119 0B Structural analysis and testing of silicon x-ray mirror modules [11119-11]
11119 0C Mass manufacturing of high resolution and lightweight monocrystalline silicon x-ray mirror modules [11119-8]

SESSION 3 ATHENA I

11119 0D Optics developments for ATHENA [11119-12]
11119 0E Development and manufacturing of SPO X-ray mirrors [11119-13]
11119 0F Installation and commissioning of the silicon pore optics coating facility for the ATHENA mission [11119-14]
11119 0G Performance and time stability of Ir/SiC X-ray mirror coatings for ATHENA [11119-15]
11119 0H Stacking of mirrors for silicon pore optics [11119-16]

SESSION 4 ATHENA II

- **11119 0I**
 X-ray testing of silicon pore optics
 [11119-17]

- **11119 0J**
 Assembly of confocal silicon pore optic mirror modules for Athena
 [11119-18]

- **11119 0K**
 Environmental testing of silicon pore optics for Athena
 [11119-19]

- **11119 0L**
 Status of the silicon pore optics technology
 [11119-20]

- **11119 0M**
 Integration facility for the ATHENA X-Ray Telescope
 [11119-21]

SESSION 5 ATHENA III

- **11119 0N**
 BEaTriX: the Beam Expander Testing X-Ray facility for testing ATHENA’s SPO modules: progress in the realization
 [11119-22]

- **11119 0O**
 VERT-X: Vertical X-ray raster-scan facility for ATHENA calibration. The concept design.
 [11119-23]

- **11119 0Q**
 Stray x-ray flux in the Athena Mirror
 [11119-26]

SESSION 6 OPTICAL COATINGS

- **11119 0S**
 Soft x-ray reflectivity-enhancement in astronomical telescopes via overcoatings: alternative materials and deposition methods
 [11119-28]

SESSION 7 MIRROR TECHNOLOGIES

- **11119 0T**
 Thin full shells oriented to the Lynx x-ray telescope: from design to breadboard realization
 [11119-29]

- **11119 0U**
 Deterministic polishing of replicating grazing-incidence mandrels
 [11119-30]

- **11119 0V**
 Glass-made adjustable integration mold for x-ray optics: experimental feasibility campaign
 [11119-31]

- **11119 0W**
 Cold glass shaping of coated mirrors: characterization of the process
 [11119-32]

- **11119 0X**
 The research of nested grazing incidence x-ray telescope with high angular resolution
 [11119-33]
SESSION 8 DIFFRACTION GRATINGS

11119 0Y Fabrication and diffraction efficiency of a 160-nm period x-ray reflection grating produced using thermally activated selective topography equilibration [11119-34]

11119 10 Curved diffractive x-ray optics for astronomy [11119-36]

11119 11 An updated optical design of the off-plane grating rocket experiment [11119-37]

11119 12 A comprehensive line spread function error budget for the Off-plane Grating Rocket Experiment [11119-38]

11119 13 Progress in x-ray critical-angle transmission grating technology development [11119-39]

SESSION 9 DESIGN

11119 14 Grazing incidence at work: an outreach project to demonstrate the X-ray optics behaviour using the nested mirrors developed for the BeppoSAX X-ray satellite [11119-40]

11119 15 Design optimization for x-ray telescopes [11119-41]

SESSION 10 TESTING

11119 16 Developments in testing x-ray optics at MPE’s PANTER facility [11119-42]

11119 17 X-ray evaluation of the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) nickel-replicated mirrors [11119-43]

SESSION 11 STRESS SHAPING

11119 18 Progress toward controlling the shape of Si mirrors coated with a magnetic smart material [11119-44]

11119 19 Novel actuators for adjustable high-resolution x-ray optics based on plastic electroactive polymers [11119-45]

11119 1A Demonstration of femtosecond laser micromachining for figure correction of thin silicon optics for x-ray telescopes [11119-46]
<table>
<thead>
<tr>
<th>Session 12</th>
<th>Optics for Gamma-Ray Astronomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>11119 1E</td>
<td>The ASTRI-Horn telescope validation toward the production of the ASTRI Mini-Array: a proposed pathfinder for the Cherenkov Telescope Array [11119-50]</td>
</tr>
</tbody>
</table>

Poster Session

11119 1F	LEXR: A low-energy X-ray reflectometer for characterization of ATHENA mirror coatings [11119-25]
11119 1I	Thermal simulations for characterization of ATHENA mirror modules with a radiating box in the BeamerX facility [11119-53]
11119 1J	BeamerX, the Beam Expander Testing X-ray facility for testing ATHENA’s SPO modules: the collimating mirror [11119-54]
11119 1K	X-ray reflectometry of a platinum coating as reference sample for the ATHENA coating development [11119-55]
11119 1L	X-ray reflectivity measurements at chromium-iridium tri-layer coatings [11119-56]
11119 1M	Characterization of a magnetron sputtering system for the development of broadband x-ray optic multilayer coatings [11119-57]
11119 1Q	Evaluating the projected performance of Wolter-I x-ray telescope designs for SmallSats [11119-61]
11119 1R	Simulating the effects of thermoelastic deformation on the THESEUS Soft X-ray Imager optics [11119-62]
11119 1S	Polarized X-ray sources for the 100m beamline calibration of the IXPE X-ray telescopes [11119-63]
11119 1T	X-ray telescope deformation reduction using stress relief features [11119-64]
11119 1U	The ASTRI contribution to the Cherenkov Telescope Array: mirror production for the SST-2M ASTRI and the MST telescopes [11119-65]
11119 1V	FlashCam: a fully digital camera for the Cherenkov telescope array medium-sized telescopes [11119-66]
11119 1W	Determination of the single photo-electron spectrum and gain measurement for the Cherenkov Telescope Array camera NectarCAM [11119-67]
At x-ray and gamma-ray wavelengths the real part of the refractive index of a material is usually written \(\Re \mu = 1 - \alpha \), where \(\alpha \) is small and positive \(10^{-3} \) to \(10^{-10} \), corresponding to refractive indices slightly less than unity. At high energies and away from absorption edges, \(\alpha \) is approximately proportional to \(\alpha^2 \), leading to a variation of the focal length of a refractive lens, \(D \propto 1/\alpha \).

D. Faklis and G. M. Morris, Broadband imaging with holographic lenses, Opt. PROCEEDINGS OF SPIE Optics for EUV, X-Ray, and Gamma-Ray Astronomy VI Stephen L. O'Dell Giovanni Pareschi Editors 26â€“29 August 2013 San Diego, California, United States Sponsored and Published by SPIE Volume 8861 Proceedings of SPIE 0277-7867-8861X, V.8861 SPIE is an international society advancing an interdisciplinary approach to the science and application of light. Optics for EUV, X-Ray, and Gamma-Ray Astronomy VI, edited by Stephen L. O'Dell, Giovanni Pareschi, Proc. of SPIE Vol. 8861, 886101 â€“ Â© 2013 SPIE CCC code: 0277-7867/13/$18 Â· doi: 10.1117/12.2046477 Proc. of SPIE Vol. 8861 The astronomical use of X-ray and gamma-ray PFLs has been discussed by Skinnerâ€“6 (see also the suggestions of Gorenstein for X-ray applications). The possible applications fall into two classes. In the first the main interest is in the superb angular resolution possible with this technique. The second class of applications uses PFLs to overcome the present impasse in gamma-ray astronomy in which scaling up of existing technologies to improve their sensitivity is impractical and maybe even counterproductive (because larger systems require larger shields that both lead to worse dead-time lo 1 SPIE Optics for EUV, X-Ray, and Gamma-Ray Astronomy VI Montreal 2014 June 27th â€“ 29th Science requirements and optimization of the silicon pore optics design for the Athena mirror Dick Willingale University of Leicester G. Pareschi, F. Christensen, J-W. den Herder, D. Ferreira, A. Jakobsen, M. Ackermann, M. Collon, M. Bavdaz. Athena+, ESAâ€™s next generation X-ray observatory Gregor Rauw High-Energy Astrophysics Group LiÃ¨ge University on behalf of the Athena+ coordination group. SIW 2003 The antenna element Ravi ATNF, Narrabri 1. The role of the antenna in a Fourier synthesis radio telescope 2. The Compact array antenna. Multilayer Overview Current application Optimization of Multilayers Model Designs for GRI. X-ray optics is the branch of optics that manipulates X-rays instead of visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, X-ray astronomy etc. Since X-rays and visible light are both electromagnetic waves they propagate in space in the same way, but because of the much higher frequency and photon energy of X-rays