Wild and domesticated Allium species have been used for culinary and ethnomedicinal purposes since the beginning of recorded history. About 95 species of native or cultivated leeks, chives, garlic, shallots, scallions, and onions are present in North America, and more than 80 ornamental Allium species are available. All Allium species and the products derived from them can be toxic to dogs and cats; however, relatively few Allium species are of important toxicologic interest.

Table 1 lists the Allium species native to North America that are most commonly involved in animal poisonings. The domesticated species commonly involved in toxicosis include Allium cepa (onion), Allium porrum (leek), Allium sativum (garlic), and Allium schoenoprasum (chive). The plants form solitary or clustered bulbs and are strongly aromatic, with an onion or garlic odor when crushed. The distinctive aroma distinguishes Allium species from morphologically similar poisonous plants, particularly death camas (Zigadenus species).

Toxicity

Allium species contain a wide variety of organosulfur oxides, particularly all(eny)lcysteine sulfoxides. Trauma to the plants, such as chewing, converts the organosulfur oxides to a complex mixture of sulfur-containing organic compounds. Many of these compounds or their metabolites are responsible for the odors, flavors, and pharmacologic effects of these plants. Many Allium species' organosulfur compounds appear to be readily absorbed through the gastrointestinal tract and are metabolized to highly reactive oxidants. Cooking or spoilage of Allium species does not reduce their potential toxicity.

Mechanism of action

The primary toxicologic mechanism of Allium species-derived organosulfur compounds is oxidative hemolysis, which occurs when the concentration of oxidants in the erythrocyte exceeds the capacity of the antioxidant metabolic pathways. Catalase antioxidant activity in erythrocytes in dogs is low, and normal hemoglobin in cats is about two to three times more susceptible to oxidative damage than the hemoglobin in other species.

Oxidation of the exposed beta-93 cysteine residues present in hemoglobin results in the formation of sulfhemoglobin. Sulfhemoglobin is less soluble than hemoglobin, so it precipitates, aggregates, and binds to the cell membrane and forms Heinz bodies. Other types of oxidation of hemoglobin globin chains result in membrane cross-linking reactions and eccentric cell formation. The formation of Heinz bodies and eccentric cells increases erythrocyte fragility and extravascular hemolysis. Direct oxidative damage to the erythrocyte cell membrane and its sodium-potassium pump or the oxidative production of hemin also contributes to cell lysis. Oxidation of the heme ion and associated methemoglobinemia results in a left shift of the hemoglobin-oxygen dissociation curve, decreased blood oxygen transportation capacity, and, ultimately, impaired delivery of oxygen to the tissues.

Thus, the result of the oxidative hemolytic process induced by Allium species consumption is the onset of anemia, methemoglobinemia, and impaired oxygen transportation. Although marked Heinz body formation may be present within a day after onions are ingested, the anemic nadir typically develops several days later.

Allicin and ajoene, pharmacologically active agents in garlic, are potent cardiac and smooth muscle relaxants, vasodilators, and hypotensive agents. Also, ajoene and other organosulfur compounds derived from onions are potent antithrombotic agents. Thus, hypotensive and antithrombotic effects can exacerbate the physiologic effects of anemia and impaired oxygen transportation. Garlic preparations that have not been aged cause direct damage to the gastric and ileal mucosa, resulting in pain and diarrhea.

Exposure and susceptibility

Allium species toxicosis most commonly occurs after oral consumption. In addition to consuming fresh plant material,
TABLE 1
Allium Species Native to North America Most Commonly Involved in Animal Toxicosis

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Appearance*</th>
<th>Distribution*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium canadense</td>
<td>Meadow garlic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium cernuum</td>
<td>Nodding onion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium validum</td>
<td>Pacific onion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allium vineale</td>
<td>Wild garlic</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Toxicology Brief

continued

consuming juice, fresh and aged dietary supplements, powdered cooking preparations, dehydrated material, or food preparations derived from or containing *Allium* species can be potentially toxic to dogs and cats. All *Allium* species toxicosis typically ensues after consumption of a single large quantity of the material or repeated small amounts. Dogs and cats are highly susceptible to onion toxicosis: Consumption of as little as 5 g/kg of onions in cats or 15 to 30 g/kg in dogs has resulted in clinically important hematologic changes. Onion toxicosis is consistently noted in animals that ingest more than 0.5% of their body weight in onions at one time.

Dogs with heritable high erythrocyte reduced glutathione and potassium concentrations are more susceptible to the hematologic effects of onions. This trait is relatively common in Japanese breeds. Other inborn errors in metabolism or nutritional deficiencies that result in decreased erythrocyte antioxidant defenses, such as glucose-6-phosphate dehydrogenase deficiency or zinc deficiency, could increase an animal’s susceptibility to *Allium* species toxicity. Concurrent treatment with xenobiotics, drugs, or dietary factors that induce erythrocyte oxidative injury (e.g., propofol, propylene glycol, dl-methionine, sulfonamides, sulfapyridine, large doses of vitamin K₃, benzocaine) or diminish erythrocyte oxidative defenses (e.g., acetaminophen) is likely to increase an animal’s susceptibility to *Allium* species toxicosis.

In severely affected animals, a blood transfusion and supplemental oxygen therapy may be required.

Clinical signs and laboratory findings

In dogs and cats, clinical signs of *Allium* species toxicosis may appear within one day of consumption if large amounts of material have been ingested; however, it is more common for clinical signs to develop after a lag of several days. Clinical signs often include depression, hemoglobinuria, hemoglobin and possibly hemosiderin urinary casts, icterus, tachypnea, tachycardia, weakness, exercise intolerance, and cold sensitivity. Inappetence, abdominal pain, and diarrhea may also be present. In cases of recent ingestion, the affected dog’s or cat’s breath may smell of onions or garlic.

Clinical pathology findings are consistent with intravascular and extravascular hemolysis, Heinz body anemia, eccentricytosis, hemoglobinemia, hemoglobinuria, hyperbilirubinemia, methemoglobinemia, and, if the animal survives long enough, an accompanying regenerative response.

Necropsy and histologic findings typically indicate hemolytic anemia. Because of the common lag of several days between ingestion and the development of clinical signs, gastrointestinal erosion or *Allium* species in the gut content may not be seen. Histopathologic findings, although consistent with hemolytic anemia, are not specific for *Allium* species toxicosis and may include deposition of hemosiderin in the phagocytic cells of the liver, spleen, and renal tubular epithelium; renal tubular pigment necrosis; and nephrotubular casts and hemoglobin casts in the renal tubules.

Differential diagnoses

Differential diagnoses include other common toxicoses: brassicaceous vegetables, propylene glycol, acetaminophen, benzocaine, vitamin K₃, dl-methionine, naphthalene, zinc, and copper. Common feline disorders associated with Heinz body formation include diabetes mellitus, particularly if ketoacidosis is present; hepatic lipidosis; hyperthyroidism; and lymphoma and other neoplasms.

Diagnosis and treatment

Allium species toxicosis is typically diagnosed through a combination of history, clinical signs, and microscopic confirmation of a Heinz body-type hemolytic anemia.

No specific antidote is available for *Allium* species toxicosis. Treatment involves gastrointestinal decontamination and removing the *Allium* species source, treating the anemia, and providing general supportive care. Inducing emesis can be valuable in asymptomatic dogs and cats provided no complicating factors are present and ingestion was within the last one or two hours. Consider administering activated charcoal after emesis. In severely affected animals, a blood transfusion and supplemental oxygen therapy may be required. Administering intravenous crystalloids is indicated if extensive vomiting and diarrhea have occurred or if hemoglobinuria or hypotension is evident.

Carefully monitor the patient’s erythron for several days after ingestion since that is when the anemic nadir usually occurs. Antioxidants, such as sodium ascorbate, vitamin E, and N-acetylcysteine, have minimal overt protective effects in onion powder toxicosis in cats. Diets low in potential oxidants are recommended; semimoist foods that contain propylene glycol should be avoided, particularly in cats.
A patient's prognosis depends on the species of plant involved, the severity of the anemia, and the institution of supportive care. In companion animals, avoiding exposure is the best preventive strategy. Feeding pets onions or other Allium species or their derivatives should be stopped.

REFERENCES
Onions, garlic, chives, and leeks are part of the Allium family and are poisonous to both dogs and cats. Garlic is considered to be about 5-times as potent as onion. Certain breeds and species are more sensitive, including cats and Japanese breeds of dogs (e.g., Akita, Shiba Inu). Toxic doses of onion and garlic can cause oxidative damage to the red blood cells (making the red blood cells more likely to rupture) and gastroenteritis (e.g., nausea, oral irritation, drooling, abdominal pain, vomiting, diarrhea). Onion and garlic poisoning may have a delayed onset and clinical signs may not be apparent for several days. Speak to an expert now: (855) 764-7661. Cannabis poisoning (from plants, leftover matter and edibles) is one of the most common plant poisoning vets see, especially in dogs. Delta nine tetrahydrocannabinol affects cat and dogs' neurological system. Incoordination, tremors, drooling, seizures, possible respiratory problems, depression, coma. Lilies. Lilies (such as peace lily, calla lily, Easter lily and Tiger lily) are highly toxic and potentially fatal to cats. Some types are also toxic to dogs. Avoid having any plant from the lily family in or around the home. And be mindful of gifted flowers. Plant species in the Allium genus such as onions, chives, garlic and leeks often make dogs and cats sick. These common ingredients contain compounds called organosulfoxides. When the animal chews the plant, the organosulfoxides are converted into a complex mixture of sulfur compounds, which can cause the animal's red blood cells to break down. However, cases of alcohol poisoning in dogs have been reported after dogs have ingested rotten apples, sloe berries used to make sloe gin, and uncooked bread and pizza dough, all of which contain the compound. When pets digest ethanol, it gets rapidly absorbed from the gastrointestinal tract and reaches the brain, just as it does in humans. PDF | Dogs and cats are the animals that owners most frequently seek assistance for potential poisonings, and these species are frequently involved with | Find, read and cite all the research you need on ResearchGate. Figure 4. Chives (Allium schoenoprasum). Salgado BS, et al. Allium species poisoning in dogs and cats. J Venom Anim Toxins incl Trop Dis | 2011 | volume 17 | issue 1. anemia. There are poisonous houseplants for dogs and cats. Some are mildly poisonous and some are fatal. It is better to know about them if you own a pet and here we've listed 34 plants toxic to dogs. Dracaena is a genus that consists 40 species of woody and shrubby plants. They are found in subtropical and tropical regions of Asia, Africa, and the Canary Islands and commonly grown as the houseplant. Toxins: Saponins.