Contents

<table>
<thead>
<tr>
<th></th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>Authors</td>
</tr>
<tr>
<td>xv</td>
<td>Conference Committee</td>
</tr>
<tr>
<td>xvii</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

Part One

SESSION 1 OPERATIONS AND DATA QUALITY CONTROL I

10704 01	Long-term monitoring of the throughput in Las Cumbres Observatory’s fleet of telescopes [10704-1]
10704 02	Finding fault: 19 years of fault-tracking during night operations at the Subaru Telescope [10704-2]
10704 03	VLT unit telescopes performance monitoring [10704-3]
10704 04	A daytime and nighttime task manager for Paranal Science Operations [10704-4]
10704 05	Alignment of wide field corrector against the primary mirror optical axis by spot images on auto guide cameras for prime focus spectrograph of Subaru Telescope [10704-5]

SESSION 2 OPERATIONS AND DATA QUALITY CONTROL II

| 10704 06 | Stray-light calibration and correction for the MetOp-SG 3MI mission [10704-7] |
| 10704 07 | The dirt in astronomy’s genie lamp: ThO contamination of Th-Ar calibration lamps [10704-8] |

SESSION 3 TIME DOMAIN AND TRANSIENT SURVEYS

10704 08	Timekeeping infrastructure for the Catalina Sky Survey [10704-10]
10704 0A	SALT and SAAO strategy, focusing on the time-domain: process, plans, and challenges [10704-12]
10704 0B	The SOAR Telescope as a node in a time domain followup-network: concepts and plans [10704-13]
A telescope control and scheduling system for the Gravitational-wave Optical Transient Observer (GOTO) [10704-14]

Dark energy survey operations: years 4 and 5 [10704-15]

SESSION 4 DATA FLOW AND MANAGEMENT

LOFAR operations: lessons learned and challenges [10704-16]

ESPERSSO data flow in operations: results of commissioning activities [10704-17]

Achieving a rolled-up view of SKA TM health status and state: definition and analysis of aggregation methods [10704-19]

SESSION 5 OPERATIONS BENCHMARKING AND METRICS I

Investigating global instrumental response for the JVLA low band ionosphere and transient experiment (VLITE) [10704-20]

SESSION 6 OPERATIONS BENCHMARKING AND METRICS II

Diversity and inclusion in observatory operations: Advocating for and implementing positive change [10704-21]

Diversity at ESO: Paranal Observatory [10704-22]

Sex-disaggregated systematics in Canadian time allocation committee telescope proposal reviews [10704-23]

Every second of science is sacred: automating science operations tracking at JCMT [10704-24]

Keck Observatory telescope control system upgrade status report [10704-25]

Astronomy operations with the Southern African Large Telescope (SALT): SALT is doing great! [10704-26]

SALT achieving synergy through integrated operations [10704-27]

Preparing the NIRSpec/JWST science data calibration: from ground testing to sky [10704-28]

ESO telbib: learning from experience, preparing for the future [10704-29]
A bibliometric analysis of observatory publications for the period 2012-2016

SESSION 7 PROGRAM AND OBSERVATION SCHEDULING I

10704 0T Science operations rehearsals: planning and scheduling of the James Webb Space Telescope [10704-31]
10704 0U Implementation and Results of the QSO-SNR mode at the Canada-France-Hawaii telescope [10704-32]
10704 0V Optimal scheduling and science delivery of spectra for millions of targets in thousands of fields: the operational concept of the Maunakea spectroscopic explorer (MSE) [10704-33]
10704 0W Design of the observation queue scheduler for WEAVE on the WHT [10704-34]
10704 0X Design of observational and control system of imaging system of a 1.2-meter-aperture telescope [10704-35]

SESSION 8 PROGRAM AND OBSERVATION SCHEDULING II

10704 0Z The abstract observatory: an interface for networking telescopes [10704-37]
10704 10 Autonomous observation scheduling in astronomy [10704-38]
10704 11 Observation scheduling with a free bug tracking software: redmine 4 obs [10704-39]

SESSION 9 ARCHIVE OPERATIONS, SURVEYS AND DATASETS

10704 13 Overview of the Mikulski Archive for space telescopes for the James Webb Space Telescope data archiving [10704-41]
10704 14 Enabling new science with MAST community contributed data collections [10704-42]
10704 15 The TESS science data archive [10704-43]
10704 16 The ESO science archive: supporting and enhancing science from the La Silla Paranal Observatory [10704-44]
10704 17 14 years of Spitzer publications: data use and reuse [10704-45]
10704 18 Indicators of the science impact of an observatory [10704-46]
Part Two

SESSION 10 SCIENCE OPERATIONS PROCESSES AND WORKFLOWS I

10704 19 The square kilometre array: challenges of distributed operations and big data rates [10704-47]
10704 1A Celebrating 20 years of scientific and technical results with the INAF-TNG Telescope [10704-48]
10704 1C Insight-HXMT science operations [10704-50]
10704 1D Lessons learned in extended-extended Spitzer Space Telescope operations [10704-51]
10704 1E Transforming the Canada France Hawaii Telescope (CFHT) into the Maunakea Spectroscopic Explorer (MSE): a conceptual observatory building and facilities design [10704-66]

SESSION 11 SCIENCE OPERATIONS PROCESSES AND WORKFLOWS II

10704 1F Eight years of solar observations with PICARD [10704-52]
10704 1G The Gemini Observatory large and long programs [10704-53]
10704 1H Reshaping the user experience at the Large Binocular Telescope Observatory (LBTO) [10704-54]
10704 1I Observing recommendations for JWST MIRI users [10704-55]
10704 1J Target acquisition for multi-object spectroscopy with JWST NIRSpec [10704-56]
10704 1K Flexible and dynamic observing at the ESO Very Large Telescope [10704-57]
10704 1M Connecting ELT to the current VLT operations scheme: how the telescope and instrument operators, as well as other groups at Paranal Observatory, are preparing the staff for the ELT era [10704-59]
10704 1O The science calibration challenges of next generation highly multiplexed optical spectroscopy: the case of the Maunakea Spectroscopic Explorer [10704-62]

SESSION 12 SITE AND FACILITIES OPERATIONS I

10704 1P Past and future evolution of Gemini operations [10704-63]
10704 1Q Visiting instruments as part of a strategic plan [10704-64]
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1R</td>
<td>Sharing and optimizing operations and resources between Maunakea Observatories</td>
<td>10704-65</td>
</tr>
<tr>
<td>1S</td>
<td>Las Campanas Observatory</td>
<td>10704-67</td>
</tr>
<tr>
<td>1U</td>
<td>MeerKAT operations in the era of large astronomical telescopes</td>
<td>10704-69</td>
</tr>
<tr>
<td>1V</td>
<td>APEX beyond 2016: the evolution of an experiment into an efficient and productive Submillimeter Wavelength Observatory</td>
<td>10704-70</td>
</tr>
<tr>
<td>1W</td>
<td>Using near real-time satellite data for severe weather protection of remote telescope facilities</td>
<td>10704-80</td>
</tr>
<tr>
<td>1X</td>
<td>Merging operations on the survey telescopes at PAO</td>
<td>10704-71</td>
</tr>
<tr>
<td></td>
<td>SESSION 13 SITE AND FACILITIES OPERATIONS II</td>
<td></td>
</tr>
<tr>
<td>1Y</td>
<td>Technical operations and maintenance activities at the Paranal Observatory</td>
<td>10704-72</td>
</tr>
<tr>
<td>20</td>
<td>Testing of the LSST’s photometric calibration strategy at the CTIO 0.9 meter telescope</td>
<td>10704-74</td>
</tr>
<tr>
<td>21</td>
<td>The Observatorio Astrofísico de Javalambre: engineering for empowering observatory operations</td>
<td>10704-75</td>
</tr>
<tr>
<td>22</td>
<td>Operation of the astronomical monitoring stations at Mt. Wumingshan</td>
<td>10704-76</td>
</tr>
<tr>
<td>23</td>
<td>More effective fault management at SALT</td>
<td>10704-77</td>
</tr>
<tr>
<td>24</td>
<td>SALT integrated safety management system</td>
<td>10704-78</td>
</tr>
<tr>
<td>25</td>
<td>Deskilling SALT primary mirror recoating process</td>
<td>10704-79</td>
</tr>
<tr>
<td>26</td>
<td>A bottom-up and top-down approach to cloud detection</td>
<td>10704-81</td>
</tr>
<tr>
<td>27</td>
<td>Calibration trending in the Spitzer beyond era</td>
<td>10704-88</td>
</tr>
<tr>
<td></td>
<td>POSTER SESSION</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Observing in higher humidity</td>
<td>10704-82</td>
</tr>
<tr>
<td>2A</td>
<td>The WEAVE observatory control system</td>
<td>10704-83</td>
</tr>
<tr>
<td>2B</td>
<td>Weather trends at the Magdalena Ridge Observatory</td>
<td>10704-84</td>
</tr>
<tr>
<td>10704 2C</td>
<td>Photometry of transients and variable sources at the Osservatorio Polifunzionale del Chianti (OPC) [10704-85]</td>
<td></td>
</tr>
<tr>
<td>10704 2D</td>
<td>Preparing SALT's software for the future [10704-86]</td>
<td></td>
</tr>
<tr>
<td>10704 2F</td>
<td>Implementation of a building automation system for the W.M. Keck Observatory summit facilities [10704-89]</td>
<td></td>
</tr>
<tr>
<td>10704 2H</td>
<td>Development of the Arizona Robotic Telescope Network [10704-91]</td>
<td></td>
</tr>
<tr>
<td>10704 2I</td>
<td>Fast photometry of stars [10704-92]</td>
<td></td>
</tr>
<tr>
<td>10704 2J</td>
<td>Framework to use modern big data software tools to improve operations at the Paranal Observatory [10704-93]</td>
<td></td>
</tr>
<tr>
<td>10704 2K</td>
<td>ALMA engineering fault detection framework [10704-94]</td>
<td></td>
</tr>
<tr>
<td>10704 2L</td>
<td>New approach to the space mission program optimisation: WSO-UV [10704-95]</td>
<td></td>
</tr>
<tr>
<td>10704 2M</td>
<td>The role of the US National Office in the Gemini partnership [10704-96]</td>
<td></td>
</tr>
<tr>
<td>10704 2O</td>
<td>Molding Chandra's public face: twitter for data products and more [10704-98]</td>
<td></td>
</tr>
<tr>
<td>10704 2P</td>
<td>Airplanes and satellites: how to keep LGS operations efficient and safe at the Large Binocular Telescope Observatory [10704-99]</td>
<td></td>
</tr>
<tr>
<td>10704 2R</td>
<td>Expected observing efficiency of the Maunakea Spectroscopic Explorer (MSE) [10704-101]</td>
<td></td>
</tr>
<tr>
<td>10704 2S</td>
<td>RFI mitigation through prediction and avoidance [10704-102]</td>
<td></td>
</tr>
</tbody>
</table>
Concepts, Design Strategies and Processes is a fundamental reference work on housing construction. The book deals with the issue of sustainability in a planning context but also analyses a buildings usage and ageing over its life cycle. A system of criteria specially developed in an accompanying research project can be used to compare and evaluate buildings. By contrast, most existing sustainability systems are conceived not as design and planning tools, but as instruments for evaluating finished buildings and completed planning. 15 practical examples explain the ways in which these criteria and other aspects of sustainable building can be implemented in sophisticated architecture and how these can then be experienced. Operations strategy is the total pattern of decisions which shape the long-term capabilities of any type of operation and their contribution to overall strategy, through the reconciliation of market requirements with operations resources (Slack and Lewis, 2011). From the previous definition operations strategy is concerned with the reconciliation of market requirements and operations resources. It does this by What makes the development of operation strategy particularly challenging is that not only should the market-based and resource-based views of strategy need to be considered at a point in time, but the changing characteristics of markets and the need to develop operations capabilities over time means a dynamic as well as a static view of strategy is required. Strategy and effectively managing business operations are key to success. We can help you to develop your company strategy and plans for the future, identify your priorities, assess the impact of changes on employees and business systems, as well as reduce corporate costs and taxes. You would like to make your company more attractive for strategic investors and capital markets. You want to improve management systems and business processes. Services we offer. Strategy development. Market analysis. Benchmarking KPIs against industry standards. 10704, Observatory Operations: Strategies, Processes, and Systems VII. KEYWORDS: Observatories, Telescopes, Astronomy, Clocks, Cameras, Satellite navigation systems, Data acquisition, Antennas, Camera shutters, Global Positioning System. Read Abstract +. Time domain science forms an increasing fraction of astronomical programs at many facilities. Synoptic and targeted observing modes of transient, varying, and moving sources rely on precise clocks to provide the underlying time tags. Often precision is mistaken for accuracy, or the precise time signals never reach the instrumentation in the fi