
Resource information. Title proper: Advances in ceramics. Country: United States. Medium: Print. ISSN Center responsible of the record: ISSN National Centre for the USA. Links. Google: www.google.com/ https://www.google.com/search?q=ISSN+"0730-9546". ISSN0730-9546. IF(Impact Factor)2020 Evaluation Pending. Website. Description. The description of this Journal has not been added. Please edit it freely or contact us. Volumes. An edition of Additives and interfaces in electronic ceramics (1983). Additives and interfaces in electronic ceramics. 0 Ratings. 0 Want to read. 0 Currently reading. 0 Have read. This edition was published in 1983 by American Ceramic Society in Columbus, Ohio. Written in English. â€“ 312 pages. 2 of the proceedings of a special conference devoted to "Grain boundaries and interfaces in ceramics," held at the Convention-Exposition Center, Cincinnati, Ohio, May 4-5, during the 84th Annual Meeting of the American Ceramic Society. Series. Advances in ceramics, v. 7. This book is intended to be a concise and comprehensive coverage of the key ceramic and glass materials used in modern technology. A group of international experts have contributed a wide ranging set of chapters that literally covers this field from A (Chap. 1) to Z (Chap. 4). The electrical resistance of alumina is high, so it is used pure and as a component in electrical insulators and components. Alumina has excellent optical transparency, and along with additives such as chromium and titanium, it is important as a gem stone (sapphires and rubies) and a laser host (ruby). Because of its high melting temperature, chemical inertness, and optical transparency, it is highly useful for containing arcs in street lamps. Four types of structurally different, flat interfaces have been observed in ZnO-based varistor ceramics containing metal-oxides additives (Bi, Mn, and Ti) by bright-field and high-resolution imaging in a transmission electron microscope. Orientation relationships have been characterized by selected-area diffraction. The faceting of ZnO grains when in contact with Feâ€“Bi2O3 is discussed in relation to the anisotropic growth of the ZnO grains which leads to pronounced faceting parallel to (0001) planes. Type. Articles. Information. Journal of Materials Research, Volume 7, Issue 2, February 1992.