


Myra C.B., Van Z., Dick L.W., Liesbeth L.L.. (2005), How unexpected are unexpected 
finding in prenatal cytogenetic diagnosi ? A literature review. European Journal 
of Obstetrics and Gynecology and Reproductive Biology. 15-21
Nussbaum R.L., McInnes R.R., Willard H.F. (2001), Thompson and Thompson: 
Genetics in Medicine. 359-391.
Nyberg D., Mahony B. S., Pretorius D. H.. (1990), Diagnostic ultrasound of fetal 
Nyhan W. L.. (1988), Diagnostic Recognition of Genetic Disease. Ann Intern Med. 503- 
504.
Phadke S.R., Sharda S., (2007), Uptake of invasive prenatal diagnosis tests in women 
after detection of soft markers for chromosomal abnormality on ultrasonographic 
Purandarey H., Chakravarty A.. (2000), Human Cytogenetics Techniques And Clinical 
Rao Kamini A. (1996), An Introduction to genetics and fetal Medicine.. The federation of 
Obst. And Gynoc. society of India (FOGSI). 51-73.
Biology.10th ed. Lippincott Wiliams & Wilkins. 31, 229.
Shaffer L. G., Slovak M. L., Campbell L. (2009), ISCN: An International system for 
Thasnevis V. (1996), Prenatal diagnostic technology shaking the basics of ethics. 
Philadelphia. WB Saunders. 45-84.
Verma I.C., Saxena R., Lal M., Bijarnia S., Sharma R. (2003), Genetic counseling and 


Genetic amniocentesis can provide information about your baby's genetic makeup. Generally, genetic amniocentesis is offered when the test results might have a significant impact on the management of the pregnancy or your desire to continue the pregnancy. Genetic amniocentesis is usually done between weeks 15 and 20 of pregnancy. Amniocentesis done before week 15 of pregnancy has been associated with a higher rate of complications. You might consider genetic amniocentesis if: You had positive results from a prenatal screening test. Babies born to women 35 and older have a higher risk of chromosomal conditions, such as Down syndrome. Your health care provider might suggest amniocentesis to rule out these conditions. Only RUB 220.84/month.


Genetic amniocentesis is performed in México 25 years ago but only few works have been published. OBJETIVE: To analyze clinical and cytogenetic findings in consecutive patients submitted to genetic amniocentesis. Overall, the success rate of cytogenetic analysis for high-risk pregnancy groups was 98.17% (2731/2782). It was significantly less successful when used to analyze data from the chorionic villus sampling compared with that from amniocentesis and umbilical cord blood (P = 0.000). Chromosomal abnormality rates derived from second trimester amniocentesis have mainly come from a collection of small-scale studies from North America and Western Europe. Find out the risks and benefits of amniocentesis, when and how amniocentesis is done, and which disorders and defects this prenatal test can detect. Amniocentesis is a prenatal test that is done to determine whether a baby has certain genetic disorders or a chromosomal abnormality, such as Down syndrome. It's usually done between 15 and 20 weeks of pregnancy, but it can be done any time after as well. Just like chorionic villus sampling (CVS), a procedure done in the first trimester, amniocentesis produces a karyotype â€“ a picture of your baby’s chromosomes â€“ so that your caregiver can see for sure if there are abnormalities. Prenatal diagnosis of chromosomal abnormalities is an important challenge for pregnancy management has relied on conventional cytogenetic analysis of cultured amniotic fluid, chorionic villi, or fetal blood for a long time. New molecular methods included FISH and QF-PCR on uncultured amniotic fluid or chorionic villi have been applied recently for the rapid aneuploidies detection in chromosomes 13, 18, 21, X and Y. Both molecular methods are quicker than Karyotype as conventional cytogenetic technique. However, our general aim was here to accelerate the detection of common aneuploidy in high-risk pregnancies as nuchal translucency greater than 3.5, advanced maternal age (>35 y), and/or positive serum screening, and not to replace karyotype with other techniques.